

Home Search Collections Journals About Contact us My IOPscience

Discrete wavelets and perturbation theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 6807

(http://iopscience.iop.org/0305-4470/36/24/316)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:41

Please note that terms and conditions apply.

Discrete wavelets and perturbation theory

W-H Steeb¹, Y Hardy¹ and R Stoop²

- ¹ International School for Scientific Computing, Rand Afrikaans University, Auckland Park 2006, South Africa
- ² Institut for Neuroinformatics, ETHZ/UNIZH, Zürich, Switzerland

E-mail: WHS@NA.RAU.AC.ZA

Received 26 February 2003, in final form 6 May 2003 Published 5 June 2003 Online at stacks.iop.org/JPhysA/36/6807

Abstract

We show with the help of examples that discrete wavelets can be a useful tool in perturbation theory of finite-dimensional quantum Hamilton systems.

PACS numbers: 02.30.Nw, 02.70.-c

In perturbation theory the Hamilton operator \hat{H} is given by $\hat{H} = \hat{H}_0 + \hat{H}_1$ where \hat{H}_0 and \hat{H}_1 are self-adjoint operators in a Hilbert space [1]. It is assumed that the perturbation \hat{H}_1 is relatively 'small' in comparison to the soluble part \hat{H}_0 . Quite often \hat{H}_0 is the diagonal term. We also quite often have the problem that (for example after a Fourier transform) \hat{H}_1 is the soluble part and \hat{H}_0 is the perturbation. A typical example is the Hubbard model. Thus it would be quite useful to have a transformation such that \hat{H}_0 is always the dominant term independent of the parameters. We assume that the Hamilton operator acts in a finite-dimensional Hilbert space. For Hamilton operators acting in a finite-dimensional vector space the discrete wavelet transform [2, 3] can play such a role.

In our first example we consider the Hubbard model. For the sake of simplicity we consider the two-point Hubbard model. In Wannier representation we have

$$\hat{H} = t \left(c_{1\uparrow}^{\dagger} c_{2\uparrow} + c_{1\downarrow}^{\dagger} c_{2\downarrow} + c_{2\uparrow}^{\dagger} c_{1\uparrow} + c_{2\downarrow}^{\dagger} c_{1\downarrow} \right) + U \sum_{j=1}^{2} c_{j\uparrow}^{\dagger} c_{j\uparrow} c_{j\downarrow}^{\dagger} c_{j\downarrow} \tag{1}$$

where the parameters t > 0 and U > 0. After a discrete Fourier transform we find the Bloch representation

$$\hat{H}_B = \sum_{k\sigma} \epsilon(k) c_{k\sigma}^{\dagger} c_{k\sigma} + U \sum_{k_1, k_2, k_3, k_4} \delta(k_1 - k_2 + k_3 - k_4) c_{k_1 \uparrow}^{\dagger} c_{k_2 \uparrow} c_{k_3 \downarrow}^{\dagger} c_{k_4 \downarrow}$$
 (2)

where

$$\epsilon(k) = t \cos(k) \qquad k = 0, \pi \mod 2\pi. \tag{3}$$

Thus we would like to consider the cases $U \gg t$ and $t \gg U$ under one approach. The Hubbard operator commutes with the total number operator \hat{N} and the total spin operator in

6808 W-H Steeb et al

the z-direction \hat{S}_z . We consider the case with two particles and $S_z = 0$. Then a basis in Wannier representation is given by

$$c_{1\uparrow}^{\dagger}c_{1\downarrow}^{\dagger}|0\rangle \quad c_{1\uparrow}^{\dagger}c_{1\downarrow}^{\dagger}|0\rangle \quad c_{2\uparrow}^{\dagger}c_{1\downarrow}^{\dagger}|0\rangle \quad c_{2\uparrow}^{\dagger}c_{2\downarrow}^{\dagger}|0\rangle. \tag{4}$$

Thus we find the Hubbard Hamilton operator in Wannier representation has the matrix representation

$$\hat{H}_W = \begin{pmatrix} U & t & t & 0 \\ t & 0 & 0 & t \\ t & 0 & 0 & t \\ 0 & t & t & U \end{pmatrix}. \tag{5}$$

We see that if $t \gg U$ the non-diagonal elements are dominant. In Bloch representation we have the basis

$$c_{0\uparrow}^{\dagger}c_{0\downarrow}^{\dagger}|0\rangle \quad c_{\pi\uparrow}^{\dagger}c_{\pi\downarrow}^{\dagger}|0\rangle \quad c_{0\uparrow}^{\dagger}c_{\pi\downarrow}^{\dagger}|0\rangle \quad c_{\pi\uparrow}^{\dagger}c_{0\downarrow}^{\dagger}|0\rangle \tag{6}$$

and the matrix representation

$$\hat{H}_B = \begin{pmatrix} U/2 + 2t & U/2 & 0 & 0 \\ U/2 & U/2 - 2t & 0 & 0 \\ 0 & 0 & U/2 & U/2 \\ 0 & 0 & U/2 & U/2 \end{pmatrix}. \tag{7}$$

The matrices given by (5) and (7) are related by the unitary transformation $\hat{H}_B = V \hat{H}_W V^*$, where the unitary matrix V is given by

Now we apply the discrete wavelet transform. The Haar matrices [2] are given by

$$K(k+1) = \begin{pmatrix} K(k) \otimes (1 & 1) \\ 2^{k/2} I_{2^k} \otimes (1 & -1) \end{pmatrix} \qquad k > 1$$
 (9)

using the Kronecker product and recursion [2], where

$$K(1) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \tag{10}$$

Thus the 4×4 Haar matrix K (after normalizing the columns) is given by

$$K = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}. \tag{11}$$

Then we find that

$$\tilde{H}_{W} = K \hat{H}_{W} K^{T} = \frac{1}{4} \begin{pmatrix} 2U + 8t & 0 & \sqrt{2}U & -\sqrt{2}U \\ 0 & 2U & \sqrt{2}U & \sqrt{2}U \\ \sqrt{2}U & \sqrt{2}U & 2U - 4t & 4t \\ -\sqrt{2}U & \sqrt{2}U & 4t & 2U - 4t \end{pmatrix}.$$
(12)

Thus we find that the largest term (2U + 8t)/4 is on the diagonal.

By a Walsh–Hadamard matrix of order n, W_n , is meant a matrix whose elements are either +1 or -1 and for which $W_n W_n^T = W_n^T W_n = nI_n$, where I_n is the $n \times n$ unit matrix. Thus $n^{-1/2}W_n$ is an orthogonal matrix. We call this Walsh–Hadamard matrix normalized. For example, the matrix given by equation (8) is a normalized Walsh–Hadamard matrix. Another 4×4 Walsh–Hadamard matrix is given by

$$W = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$
 (13)

where we have normalized the matrix. Then the Hamilton matrix (5) takes the form

$$\tilde{H}_W = W \hat{H}_W W^T = \frac{1}{4} \begin{pmatrix} 2U + 8t & 0 & -2U & 0\\ 0 & 2U & 0 & -2U\\ -2U & 0 & 2U - 8t & 0\\ 0 & -2U & 0 & 2U \end{pmatrix}. \tag{14}$$

Thus we find again that the dominant term is on the diagonal. A subset of the Walsh–Hadamard matrices can be extended to higher dimensions as follows using the Kronecker product

$$W_1 = (1)$$
 $W_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ (15)

and

$$W_{2^{n+1}} = W_{2^n} \otimes W_2. \tag{16}$$

As a higher dimensional example we consider the spin Hamilton operator [4]

$$\hat{H} = a \sum_{j=1}^{3} \sigma_3(j)\sigma_3(j+1) + b \sum_{j=1}^{3} \sigma_1(j)$$
(17)

with cyclic boundary conditions, i.e. $\sigma_3(4) \equiv \sigma_3(1)$. Here a, b are real constants and σ_1, σ_2 and σ_3 are the Pauli matrices. Since

$$\sigma_k(1) = \sigma_k \otimes I \otimes I \qquad \sigma_k(2) = I \otimes \sigma_k \otimes I \qquad \sigma_k(3) = I \otimes I \otimes \sigma_k$$
 (18)

(k=1,2,3) we obtain an 8×8 matrix. For the first term in the spin Hamilton operator (17) we find a diagonal matrix. The second term leads to non-diagonal terms. Using (18) we find the symmetric 8×8 matrix for \hat{H}

$$\begin{pmatrix}
3a & b & b & 0 & b & 0 & 0 & 0 \\
b & a & 0 & b & 0 & b & 0 & 0 \\
b & 0 & a & b & 0 & 0 & b & 0 \\
0 & b & b & -a & 0 & 0 & 0 & b \\
b & 0 & 0 & 0 & a & b & b & 0 \\
0 & b & 0 & 0 & b & -a & 0 & b \\
0 & 0 & b & 0 & b & 0 & -a & b \\
0 & 0 & 0 & b & 0 & b & b & -3a
\end{pmatrix}.$$
(19)

6810 W-H Steeb et al

Applying the 8×8 Haar matrix constructed from equation (9) we find that

Applying the 8 × 8 Haar matrix constructed from equation (9) we find that
$$K\hat{H}K^{-1} = \begin{pmatrix} 3b & a & a/\sqrt{2} & a/\sqrt{2} & a/2 & a/2 & a/2 & a/2 \\ a & b & a/\sqrt{2} & -a/\sqrt{2} & a/2 & a/2 & -a/2 & -a/2 \\ a/\sqrt{2} & a/\sqrt{2} & a & b & a/\sqrt{2} & -a/\sqrt{2} & 0 & 0 \\ a/\sqrt{2} & -a/\sqrt{2} & b & -a & 0 & 0 & a/\sqrt{2} & -a/\sqrt{2} \\ a/2 & a/2 & a/\sqrt{2} & 0 & 2a-b & b & b & 0 \\ a/2 & a/2 & -a/\sqrt{2} & 0 & b & -b & 0 & b \\ a/2 & -a/2 & 0 & a/\sqrt{2} & b & 0 & -b & b \\ a/2 & -a/2 & 0 & -a/\sqrt{2} & 0 & b & b & -2a-b \end{pmatrix}.$$

$$(20)$$

We see again that the dominant terms are on the diagonal. If we apply the Hadamard matrix $W := W_2 \otimes W_2 \otimes W_2$ we find that $W \hat{H} W^T$ takes the same form as equation (19) but with constants a and b interchanged. This is due to the fact that $\sigma_1 = W_2 \sigma_3 W_2^T$ and $\sigma_3 = W_2 \sigma_1 W_2^T$. Thus the subgroup of Hadamard matrices constructed from the Kronecker product of the 2×2 Hadamard matrix does not rotate a and b on the diagonal for the Hamilton operator (17). The operator $W_2 \otimes W_2 \otimes \cdots \otimes W_2$ plays a central role in quantum computing [5]. It generates a linear combination of the integers from 0 to $2^n - 1$.

In the examples given above we have shown that the Haar and Walsh-Hadamard transforms yield a Hamilton operator with dominant terms on the diagonal of the matrix representation. The standard Rayleigh-Schrödinger perturbation expansion [6] for systems with a discrete spectrum $\hat{H} = \hat{H}_0 + \lambda \hat{V}$ and bounded from below yields up to second-order approximation

$$E_n(\lambda) \approx E_n(0) + \lambda \langle \psi_n(0) | \hat{V} | \psi_n(0) \rangle + \lambda^2 \sum_{m \neq n} \frac{|V_{mn}(0)|^2}{E_n(0) - E_m(0)}.$$

This approximation follows as a special case of the solution of the initial value problem of the autonomous system of ordinary differential equations [1, 7]

$$\begin{split} \frac{\mathrm{d}E_n}{\mathrm{d}\lambda} &= p_n & \frac{\mathrm{d}p_n}{\mathrm{d}\lambda} &= 2\sum_{m\neq n} \frac{V_{mn}V_{nm}}{E_n - E_m} \\ \frac{\mathrm{d}V_{mn}}{\mathrm{d}\lambda} &= \sum_{k(\neq m,n)} \left(V_{mk}V_{kn}\left(\frac{1}{E_m - E_k} + \frac{1}{E_n - E_k}\right)\right) + \frac{V_{mn}(p_n - p_m)}{E_m - E_n} \end{split}$$

using a Lie series expansion of the vector field of the autonomous system up to second order [1]. Here $p_n(\lambda) := \langle \psi_n(\lambda) | \hat{V} | \psi_n(\lambda) \rangle$ and $V_{mn}(\lambda) := \langle \psi_m(\lambda) | \hat{V} | \psi_n(\lambda) \rangle$ $(m \neq n)$. This system has to be solved with the initial values $E_n(0) = \langle \psi_n(0) | \hat{H}_0 | \psi_n(0) \rangle$ etc. The approach described above provides a new \hat{H}_0 and \hat{V} so that we can deal with two parameters using one expansion. This system of differential equations also allows the study of the Riemann sheet structure of the energy levels $E_n(\lambda)$ (λ complex) and of exceptional points [8, 9].

References

- [1] Steeb W-H 1998 Hilbert Spaces, Wavelets, Generalized Functions, and Modern Quantum Mechanics (Dordrecht:
- [2] Steeb W-H 1997 Matrix Calculus and Kronecker Product with Applications and C++ Programs (Singapore: World Scientific)

- [3] Steeb W-H 2002 The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Wavelets, Fuzzy Logic with C++, Java and Symbolic C++ Programs 2nd edn (Singapore: World Scientific)
- [4] Steeb W-H 2003 Problems and Solutions in Theoretical and Mathematical Physics volume II, Advanced Level 2nd edn (Singapore: World Scientific)
- [5] Hardy Y and Steeb W-H 2001 Classical and Quantum Computing with C++ and Java Simulations (Basel: Birkhäuser Verlag)
- [6] Bohm A 1994 Quantum Mechanics 3rd edn (New York: Springer)
- [7] Yukawa T 1986 Phys. Lett. 54 227
- [8] Heiss W D and Steeb W-H 1991 J. Math. Phys. 32 3003
- [9] Steeb W-H and Heiss W D 1993 Phys. Scr. 47 321